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SOURCES AND FATES OF NUTRIENTS IN THE TIDAL, FRESHWATER JAMES RIVER 

By William N. Isenberg, B.S. 
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Science in Environmental Studies at Virginia Commonwealth University. 
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Director:  Paul A. Bukaveckas, Ph.D. Associate Professor, Center for Environmental 
Studies & Department of Biology 

 

  

Tidal freshwater reaches of estuaries may play an important role in mitigating 

nutrient fluxes from watersheds to the coastal zone due to their location at the interface 

between riverine and estuarine systems.  We developed annual N and P budgets for the 

tidal, freshwater James River over 4 calendar years (2007-2010) taking into account 

riverine inputs at the Fall Line, local points sources (including CSO events), ungagued 

inputs, riverine outputs, and tidal exchange.  The tidal freshwater James River 

experiences high areal loading rates of TN (383 mg/m2/d) and TP (70 mg/m2/d) due to 

the combined effects of large watershed area and local point source discharges.  On an 

annual basis, riverine sources dominated TN and TP inputs (59% and 84%, respectively), 
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whereas during low discharge summer months (May-Oct) point sources were more 

important.  Proportional retention of TP inputs (59±7%) was greater than TN retention 

(27±4%) with annual absolute retention being 1,800±350 kg TP/d, and 5,900±2,700 kg 

TN/d.  Proportional retention of TN and dissolved inorganic fractions of N and P was 

highest during the low discharge summer months due to reduced loading rates and 

increased residence times and biotic activity.  TP retention was greatest during high 

discharge winter months (Nov-Apr) when loading rates were highest.  High retention 

during this period of low biotic activity suggests that trapping of riverine derived 

particulate-bound P via sedimentation was an important mechanism of P retention.  

Understanding this seasonal variation in nutrient inputs and retention can help to inform 

management decisions regarding reducing nutrient inputs to the Chesapeake Bay and 

improving local water quality. 
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INTRODUCTION 

 

In response to the growing human population, the increase in human nutritional 

requirements has lead to greater demand for nitrogen (N) and phosphorus (P) fertilizers (Nixon, 

1995).  Uneven distribution of fertilizer application, transportation of food across watershed 

boundaries, and the growth of urban centers have lead to a general increase in N and P transport 

to coastal environments (Nixon, 1995; NRC, 2000).  Increases in N and P transport can lead to 

eutrophic conditions, which are associated with a range of detrimental effects including 

decreases in biodiversity, harmful algal blooms, and a reduction in submerged aquatic vegetation 

(Howarth et al., 2000).  Accordingly, this increase in N and P transport is currently considered 

the greatest pollution problem for coastal environments of the United States (NRC, 2000).   

Nutrient loads are delivered by point sources that discharge directly into the river or 

estuary (i.e., industrial waste water, municipal waste water treatment plants; WWTPs), and by 

non-point sources distributed throughout the watershed (i.e., farm and pasture fields, atmospheric 

deposition across the watershed).  In temperate climates, the magnitude and timing of nutrient 

loads are affected by seasonal variation in watershed runoff.  During winter, low rates of 

evapotranspiration result in greater runoff and large associated non-point source nutrient loads 

(Ensign et al., 2006; Murrell et al., 2007).  During summer, low river discharge and elevated 

rates of terrestrial biogeochemical processes result in smaller non-point source loads, thereby 

increasing the relative importance of point sources, which are relatively constant year-round 

(Correll et al., 1992; Lampman et al., 1999).  Jarvie et al. (2006) argued that annualized nutrient 

loads to UK estuaries were dominated by high discharge events occurring during winter months, 

but because of cold temperatures, biological responses to nutrient inputs were reduced.  Thus 
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point sources may be of greater importance in causing eutrophication despite accounting for a 

smaller proportion of annualized inputs.  Therefore, an understanding of nutrient sources requires 

consideration of seasonal variation in inputs and sensitivity of receiving waters. 

Aquatic ecosystems act to both transform and retain nutrient inputs from their 

watersheds.  Both biotic and abiotic processes change the total mass, physical form, and 

bioavailability of N and P exported from estuaries (Froelich, 1988; Seitzinger, 1988; Nedwell et 

al., 1999).  Such biotic processes include denitrification and algal assimilation of N and P.  In the 

case of denitrification, bacteria reduce nitrate (NO3) under anaerobic conditions to oxidize 

organic matter in the sediments producing non-bioavailable N2 gas, which ultimately outgases 

into the atmosphere (Seitzinger, 1988; Nedwell et al., 1999).  Rates of denitrification increase 

with increases in temperature, benthic organic matter content, and water column NO3 

concentrations (Seitzinger, 1988; Nedwell et al., 1999).  Algal assimilation of inorganic N and P 

into cellular tissues transforms the nutrients into a less bioavailable particulate organic state and 

is positively related to light availability, temperature, and nutrient availability (Cole et al., 1992; 

Nedwell et al., 1999).  Abiotic factors that affect the bioavailability and retention of N and P in 

estuaries include phosphate (PO4) adsorption to sediments and the sedimentation and subsequent 

burial of particulate forms of N and P in the sediments.  PO4 adsorption is a process that 

transforms bioavailable PO4 into a non-bioavailable particulate inorganic state via the attachment 

of PO4 to sorption sites on terrestrially derived sediments (Froelich, 1988; Nedwell et al., 1999).  

This process is influenced by the number of sorption sites on the sediments, which is a function 

of watershed geology, and the phosphate buffering mechanism that is controlled by the balance 

between the concentration of PO4 in the water and PO4 adsorbed to the sediments (Froelich, 

1988; Nedwell et al., 1999).  Particulate forms of N and P are subject to gravity and thus undergo 
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sedimentation and become buried in the sediments (Nedwell et al., 1999).  Although the long 

term retention of particulate N and P in the sediments is not certain, biogeochemical processes 

within the sediments can act to retain and/or alter nutrient forms (Nedwell et al., 1999).   

The efficiency of the different biotic and abiotic processes to transform and retain 

nutrients in estuaries is affected by the complex interplay of different environmental variables.  

Because water residence time affects the amount of time different biotic and abiotic processes 

can alter nutrient loads, greater water residence times have been shown to retain a larger 

proportion of N and P inputs (Nixon et al., 1996).  However, because this retention-residence 

time relationship was developed using annualized values Arndt et al. (2009) argued that the 

complex interplay of residence time and factors that affect the rates of biogeochemical processes 

influences retention on seasonal and shorter time scales.  The percentage of N and P retained in 

estuaries varies seasonally (Lampman et al., 1999; Jarvie et al., 2006; Boynton et al., 2008; 

Arndt et al., 2009) due to temperature effects on rates of estuarine biotic and abiotic processes 

(Lampman et al., 1999; Nedwell et al., 1999; Arndt et al., 2009) and the effect of seasonal 

variation in discharge on both nutrient loads and water residence times (Ensign et al., 2006; 

Murrell et al., 2007; Arndt et al., 2009).  Accordingly, the efficiency with which estuaries retain 

nutrients is influenced by the magnitude and timing of inputs (Nedwell et al., 1999; Howarth et 

al., 2006; Jarvie et al., 2006).  During warm months, high rates of primary production and long 

water residence time favor greater processing of N and P (Nixon, 1995; Nixon et al., 1996; 

Nedwell et al., 1999; Arndt et al., 2009).  Tidal freshwater zones may play a particularly 

important role in mitigating nutrient fluxes from watersheds to the coastal zone, due to their 

location at the interface between riverine and estuarine systems (Schuchardt et al., 1993; 
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Lampman et al. 1999; Bukaveckas et al., 2011).  Large nutrient loading rates coupled with high 

biological production may allow for high rates of nutrient retention in tidal freshwaters. 

The tidal freshwater portion of the James River experiences persistent algal blooms 

during summer months (Bukaveckas et al., 2011) and is considered impaired due to persistently 

high chlorophyll a (CHLa) concentrations.  This has led to efforts to reduce nutrient loads to 

improve local water quality as part of the 2010 Chesapeake Bay TMDL.  Because N and P limit 

algal production, a study characterizing seasonal variation in point and non-point source inputs 

would provide a timely contribution to understanding the sources of nutrients supporting 

persistent algal blooms.  In addition, comparisons of input and output fluxes provide a basis for 

quantifying retention and its role in mitigating nutrient export to Chesapeake Bay.  Accordingly, 

the objectives of this study were to characterize seasonal and interannual variation in nutrient 

inputs, outputs, and retention over four calendar years (2007-2010) using a mass balance 

approach. 
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MATERIALS AND METHODS 

Study Area 

The James River is formed by the confluence of the Jackson and Cowpasture Rivers and 

flows 368 km eastward to the Fall Line at Richmond, VA.  Below this point is the James River 

Estuary, which extends 177 km to its confluence with Chesapeake Bay (Smock et al., 2005).  

The James River is the third largest tributary of the Chesapeake Bay by discharge and nutrient 

loads (Belval & Sprague, 1999).  Its watershed (26,164 km2) is predominantly forested (71%) 

with the remaining land use being agricultural (23%) and urban (6%; Smock et al., 2005).  Major 

urban centers are located at the Fall Line (Richmond Metro area; population = 1,258,000) and 

near the confluence with Chesapeake Bay (Virginia Beach-Norfolk-Newport News Metro area; 

population = 1,649,000). 

A nutrient mass balance was constructed for the 58 km segment extending from the Fall 

Line (ca. river mile 110) to river mile 74 (near Hopewell, VA; Figure 1).  The study reach 

comprises two-thirds of the tidal freshwater segment (which extends to river mile 55) and 

includes the site of the CHLa maximum located at river mile 75 (Bukaveckas et al. 2011).   The 

study reach receives nutrient inputs from the majority of the James River watershed (22,753 

km2) and point source discharges from the Richmond Metro Area.  Annual average discharge of 

the James River is 213 m3/s (at the Fall Line).  The Appomattox River is the largest tributary of 

the James contributing on average 38 m3/s (~15% of annual combined discharge).  In terms of 

freshwater replacement time, the average water residence time for the study reach is 4 days.  The 

major point sources of N and P include 4 industrial facilities and 6 municipal WWTPs with a 

total combined discharge averaging 13 m3/s.  Point sources include Richmond combined sewer 
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overflow (CSO) events in which untreated sewage and stormwater are discharged to the James 

during periods when rainfall exceeds treatment and storage capacity.   

The study reach was sub-divided into 5 zones based on historical sampling locations with 

1-3 sampling stations occurring in each zone (Figure 1; Table 1).  Zones 1-3 (upper segment) are 

characterized by a narrow, deep riverine channel whereas Zone 4 (near Hopewell, VA) includes 

extensive shallow areas lateral to the main channel.  Zone 5 is the tidal portion of the 

Appomattox River.  Data from a station located 8 km beyond the study reach (at river mile 69) 

were used to infer the chemistry of incoming tidal waters.  The study reach experiences semi-

diurnal tides of 0.78 m in amplitude resulting in a large tidal prism (32,991,000 m3/tide) relative 

to the storage volume (80,793,000 m3; Table 1).   

Nutrient Budgets – Overview 

Budgets were constructed for total nitrogen (TN), total phosphorus (TP), ammonia (NH3), 

nitrate/nitrite (NOx), and phosphate (PO4).  Greater retention of dissolved inorganic nutrients 

(NH3, NOx, & PO4) was expected as these forms are the most biologically available (Nedwell et 

al. 1999; Middelburg & Nieuwenhuize, 2000).  Budgets were constructed by quantifying major 

inputs and outputs to and from the study reach.  Nutrient inputs included riverine sources (upper 

James and Appomattox River watersheds), local point sources (municipal WWTPs, industry, and 

CSO), ungauged inputs, and tidal exchange.  Direct atmospheric inputs of N were small (<1% of 

total N inputs based on local deposition values; Jaworki et al., 1997) and therefore were not 

included in the budget.  Outputs from the study reach included downstream export (to the lower 

estuary) due to displacement by riverine inputs and tidal exchange.  Nutrient retention was 

estimated by difference from inputs and outputs taking into account changes in storage: 
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(1)      Retention = INriv + INpoint – OUTriv ± TE ± ∆Storage 

 

where INriv represents riverine and ungauged inputs, INpoint represents the local point source 

inputs, OUTriv represents the riverine outputs, TE represents net tidal exchange, and ∆Storage 

represents the change in storage (Appendix Figure 1).  Storage effects take into account changes 

in nutrient concentrations within each of the 5 zones over the monthly budget period.  Changes 

in water level were not considered as these were assumed to be small given the large ratio of 

water inputs to storage volume within the study reach.  Due to the constraints of data availability, 

retention estimates were derived at monthly time steps.  Results are reported as annual, monthly, 

and average daily rates.   

Riverine Inputs  

Nutrient inputs from the James and Appomattox watersheds were calculated as the 

product of average daily discharge and measured nutrient concentrations (N = 17-23 per year) 

obtained from the USGS River Input Monitoring Program (USGS; Table 2; Appendix Figure 1; 

http://nwis.waterdata.usgs.gov/va/nwis/qwdata).  James River discharge and nutrient 

concentrations were measured at Cartersville, VA.  Regressions relating concentration to 

discharge showed significant relationships for TN and TP (R2= 0.61 and 0.83, respectively; p < 

0.0001), but weak relationships for inorganic nutrient fractions (R2 < 0.3).  Concentration-

discharge relationships developed from the Cartersville site were used in conjunction with 

discharge measurements at Richmond to derive riverine fluxes because the Richmond site is 

proximal to the study reach and exhibits higher discharge (~8%).  For inorganic fractions, 

concentrations on dates in-between measurements were set equal to the closest sampling date.  

Appomattox River inputs were derived using nutrient concentrations and discharge measured at 
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Matoaca, VA.  No significant concentration-discharge relationships were found for the 

Appomattox and therefore concentrations were set equal to those of the proximal sampling date 

for all nutrient fractions.  Ungauged inputs from the watershed area that drains directly to the 

study reach represent 8% of the total watershed area.  As a result, we increased riverine input 

fluxes by 8% to incorporate this contribution (Boynton et al., 1995; Robson et al., 2008).   

Point Source Inputs 

Municipal WWTPs and industrial dischargers report monthly effluent discharge and 

nutrient concentrations to the EPA National Pollutant Discharge Elimination System (NPDES; 

Table 2; Appendix Figure 1) database.  Monthly nutrient fluxes for each point source were 

derived as the product of mean effluent discharge and mean nutrient concentrations.  Individual 

point source fluxes were summed to derive the total monthly input.  Nutrient inputs from 

Richmond CSO events were included with other point sources.  Due to the unpredictable, event-

based nature of CSO events, monitoring of effluent discharge and concentration is lacking.  

However, model-derived estimates of CSO discharges were available from the City of Richmond 

Department of Public Utilities.  Data for the three largest outfalls (representing 92% of total CSO 

discharge) were available for all four years.  Nutrient concentrations were measured by the City 

of Richmond at the largest CSO outfall (Shockoe) during four events in 2009.  Concentrations of 

NOx (mean = 0.6 mg/L) and PO4 (mean = 0.4 mg/L) were similar among the 4 events (CV = 9% 

and 26%), whereas concentrations of NH3 (mean = 3.7 mg/L; range = 0.9 - 7.4 mg/L), TN (mean 

= 7.9 mg/L; range = 4.4 - 13.4 mg/L) and TP (mean = 1.0 mg/L; range = 0.4 - 1.6 mg/l) were 

more variable (Appendix Table 1).  These average values were used in conjunction with the 

monthly outfall estimates to determine nutrient loads associated with CSO inputs throughout the 

period of study.      
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Riverine Outputs 

Output fluxes due to displacement by riverine inputs were estimated as the product of 

river discharge (including ungauged inputs) and measured nutrient concentrations at JMS75.  

Data from JMS75 were used to estimate nutrient export to the lower estuary because it is the 

most downstream sampling station within the study reach.  Nutrient concentrations at this station 

were measured monthly throughout the study period by the Virginia Department of 

Environmental Quality (VaDEQ; Table 2; Appendix Figure 1) as part of the EPA Chesapeake 

Bay Monitoring Program (CBMP).  Supplemental data were available for 2007 (weekly, April-

November; Bukaveckas et al. 2011), 2009 (bi-weekly, August-October; Bukaveckas unpubl.), 

and 2010 (weekly, July-December; Bukaveckas unpubl.).  No data were available for August 

2008 and therefore the average of July and September was used.  On January 12, 2009, a barge 

carrying ammonium sulfate sank near river mile 73 (Hopewell, VA) and released an estimated 

1.1 million kg of ammonium sulfate 

(http://www.deq.state.va.us/info/esound/February2009.html#article2).  This event affected NH3 

and TN concentrations and fluxes during January and February.  To facilitate comparisons with 

other years, we substituted average values from January and February of other years when 

calculating total annual retention for 2009.  

Tidal Exchange 

Tidal exchange was not measured directly as part of this study as this would require high 

frequency measurements of water level and velocity over each tidal cycle to determine the 

volume entering and leaving the study reach.  Moreover, much of the water leaving the study 

reach on an out-going tide is likely to return during the subsequent incoming tide.  For a mass 

balance analysis, the property of interest is the difference between the input and output fluxes 
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(i.e., net tidal exchange).  This property may be estimated using a chloride (Cl) budget approach 

(Robson et al., 2008).  As Cl behaves conservatively, retention is assumed to be negligible and 

the terms of the mass balance equation can be re-arranged to solve for net tidal exchange based 

on measured changes in the mass of Cl in the estuary and measured Cl concentrations in 

incoming and outgoing tidal waters.  Weekly Cl data were available for a 12-month period (July 

2010-June 2011) during which concentrations were measured for incoming river water (at 

Richmond), 7 stations within the study reach and one station located below the study reach 

(JMS69; Table 2; Appendix Figure 1).  By solving for differences between observed and 

predicted volume-weighted, Cl concentrations within the study reach, we determined that net 

tidal exchange was on average 2.5% of the tidal prism (Appendix Figure 2).  This value was used 

to infer tidal exchange throughout the budget period based on measured tidal amplitudes 

(NOAA; Table 2; Appendix Figure 1).  Residual error between observed and predicted volume-

weighted Cl concentrations averaged 6% for the 12-month calibration period, corresponding to a 

mean difference in Cl of 5.4 mg/L over an observed range of 6.5 to 136.4 mg/L.  Given this 

margin of error in the Cl budgets, we assumed that nutrient retention estimates exceeding 6% 

were indicative of source or sink effects within the study reach.  In addition, we performed a 

sensitivity analysis whereby net tidal exchange was increased from 2.5% to 5%, 10%, and 20% 

of the tidal prism to assess the effects on retention estimates. 

Storage Effects 

Nutrient inputs and outputs affect concentrations within the waterbody such that changes 

in the stored mass must be accounted for in monthly balances.  The mass of nutrients stored 

within the study reach was calculated by summing the products of concentration and water 

volume for each of the 5 zones (Table 2; Appendix Figure 1).  For Zone 3, concentration 
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measurements were available from three sources though one of these (JMS87; VaDEQ Ambient 

Water Quality Monitoring program) was limited to TN and TP measurements only, whereas the 

others (JMS79 & JMS87; Bukaveckas et al., 2011, Bukaveckas unpubl.) had limited temporal 

coverage (~20 of 48 months).  A regression model relating inorganic nutrient concentrations at 

this site to the average of concentrations from two proximal sampling locations (Zone 2 and 4) 

showed good predictive power for NOx and PO4 (R2 = 0.86 and 0.78, respectively) though the 

relationships for NH3 was weaker (R2 = 0.39).  The regression models were used to infer missing 

values for the inorganic fractions in Zone 3.   

Budget Uncertainty 

Hypothesis testing statistics are not typically used in ecosystem nutrient budgets.  

However, the propagation of error that occurs as budget terms are derived requires an estimation 

of uncertainty in retention estimates.  As fluxes were the product of nutrient concentrations (c) 

and discharge (d), error was calculated using the equation from Eyre et al. (2011):  

 

(2)      Flux Error = ((meanc * errord)2 + (meand *errorc)2 + (errorc * errord))0.5 

 

where meanc is the mean nutrient concentration, meand is the mean discharge, errorc is the 

standard error for nutrient concentrations, and errord is the standard error of discharge.  In order 

to directly measure the propagation of error in retention estimates, flux errors were added in 

quadrature:   

 

(3)      Retention Error = ((errorRI)2+(errorPS)2+(errorRO)2+(errorTE)2)0.5 
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where errorRI is the riverine input standard error, errorPS is the point source standard error, 

errorRO is the riverine output standard error, and errorTE is the tidal exchange standard error.  In 

addition, the influence of cumulative error on retention estimates was simulated by adjusting 

each flux up and down by its associated standard error to generate a simulated range of retention 

estimates.   
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RESULTS 

Riverine & Point Source Inputs 

Riverine inputs averaged 13,000±1,500 kg/d of TN and 2,500±290 kg/d of TP over the 4-

year study (Table 3).  During this period, discharge averaged 198 m3/s and was below the 40-

year mean of 250 m3/s.  Annual average discharge was lowest in 2008 (140 m3/s) and highest in 

2009 (240 m3/s).  Interannual variation in nutrient loads ranged from 7,800 to 16,400 kg TN/d 

and from 1,050 to 3,600 kg TP/d.  TN and TP combined inputs (INriv + INpoint) were dominated 

by riverine sources which represented 59% and 84% of inputs, respectively. Seasonal variation 

in river inputs followed trends in discharge which was highest in winter months (Figure 2).  TN 

and TP concentrations were positively correlated with discharge (See Methods: Riverine Inputs) 

and therefore high discharge periods accounted for a disproportionately greater fraction of annual 

loads.  For example, TN inputs were 4-fold higher (21,100 kg/d vs. 5,400 kg/d) during high 

discharge months (Nov-April; mean = 296 m3/s) compared to low discharge months (May-Oct; 

mean = 102 m3/s).  Seasonal differences were even larger for TP with average daily loads 6-fold 

higher in November-April (4,300 kg/d) compared to May-October (700 kg/d).   

Point source inputs averaged 9,100±200 kg TN/d and 470±15 kg TP/d (Table 3) with 

little intra- or inter-annual variation.  The proportion of annual combined inputs contributed by 

point sources ranged from 36% to 53% for TN (mean = 41%) and from 10% to 31% for TP 

(mean = 16%) over the 4 years.  Point source inputs were relatively constant on a seasonal basis, 

and therefore accounted for a greater fraction of total inputs during summer months when 

riverine inputs were low (Figure 2).  Point sources accounted for 62% of TN and 42% of TP 

inputs during May-October.  Point sources were particularly important for dissolved inorganic 

fractions (NH3, NOx, & PO4) as concentrations in effluent were an order of magnitude higher 
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than riverine concentrations (Table 4).  Annual combined inputs of TN were comprised of 13% 

NH3 and 42% NOx, with 19% of TP combined inputs accounted for by PO4.  Point sources 

contributed 89% of NH3, 53% of NOx, and 64% of PO4 combined annual inputs.  During May-

October, these proportions increased to 93% for NH3 and 75% for both NOx and PO4 inputs.  

Over the 4-year study, annual point source inputs of PO4 decreased by one third due to 

reductions in effluent concentrations at the Richmond WWTP.  CSO inputs were a relatively 

minor contribution accounting for less than 7% of point source inputs for all nutrient fractions.  

CSO events occurred in every month, though their discharge varied widely (896-135,687m3/mo), 

at times accounting for up to 12% of TN (Sep. 2010) and 30% of TP (Nov. 2009) in monthly 

point source inputs.  There was no consistent seasonal pattern in CSO nutrient loads (Appendix 

Figure 3).     

Because point sources discharge at discrete locations along the estuary they affected 

longitudinal patterns of nutrient concentrations within the study reach (Figure 3).  For example, 

NOx and PO4 concentrations increased 3-fold below the Richmond WWTP/CSO (at river mile 

109), which accounted for 46% and 39% of NOx and PO4 point source inputs, respectively.  

Similarly, NH3 concentrations were highest at river mile 75, which was near two point sources 

(at river mile 76.5) that accounted for 76% of point source NH3 loads.  Although TN and TP 

increased below the Richmond WWTP/CSO, their concentrations generally showed stronger 

correspondence with trends in CHLa than the location of point sources.  In summary, riverine 

sources accounted for the majority of total annual TN and TP inputs, whereas point sources 

dominated inputs of dissolved inorganic fractions, particularly during summer, low-discharge 

conditions. 

 Riverine Outputs, Tidal Exchange, & Storage Effects 
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Riverine outputs averaged 16,200±2,200 kg TN/d and 1,200±200 kg TP/d over the 4-year 

study period (Table 3), with annual averages ranging from 14,000 kg/d to 18,400 kg/d for TN 

and 970 kg/d to 1,400 kg/d for TP.  Variation in riverine outputs was predominantly driven by 

discharge and secondarily by seasonal variation in nutrient concentrations in the estuary (Figure 

4).  During May-October, riverine outputs averaged 8,200 kg TN/d and 720 kg TP/d whereas 

during November-April outputs averaged 24,400 kg TN/d and 1,700 kg TP/d.  For inorganic N 

fractions, riverine outputs were 4-fold greater during the winter months (2,600 kg NH3/d and 

11,700 kg NOx/d) than during summer months (680 kg NH3/d and 2,600 kg NOx/d).  Similarly, 

riverine outputs of PO4 were 3-fold greater during winter months than during summer months 

(340 kg/d vs. 120 kg/d).  For TN, NH3, TP, and PO4, monthly combined inputs exceeded riverine 

outputs during most months (>90%).  However for NOx, outputs were equal to or greater than 

inputs during half of the winter months.  Tidal exchange and storage effects were minor 

components of the nutrient budgets (Figure 4).  On an annual basis, tidal exchange resulted in a 

net loss of nutrient from the study reach though the difference in fluxes was small (≤1% of 

outputs) due to small differences in concentration between in-coming (JMS69) and out-going 

(JMS75) tidal waters (Figure 3; Table 3).  Similarly, monthly changes in storage were 1% or less 

of inputs for all nutrient fractions.   

Retention 

Annual retention averaged 5,900±2,700 kg TN/d and 1,800±350 kg TP/d, with inter-

annual variation ranging from 2,500 kg/d to 9,200 kg/d for TN and 550 kg/d to 2,700 kg/d for TP 

(Figure 5).  The amount of TN and TP retained was positively related to the magnitude of inputs 

with highest retention occurring in 2010.  Regressions relating monthly retention to nutrient 

inputs exhibited strong and significant relationships for TN (R2=0.50; p <0.0001) and TP 
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(R2=0.99; p <0.0001).  Relationships between loads and retention for inorganic nutrients were 

weak (R2<0.2) and not significant.  Retention of TN averaged 27±4% of inputs whereas 

proportional retention of TP averaged 59±7% of inputs.  Proportional retention of NH3, NOx, and 

PO4 were 42±6%, 23±2%, and 59±5%, respectively.  Annual variation in proportional retention 

ranged from 16% to 36% for TN and 36% to 68% for TP.  A greater proportion of TP inputs 

were retained relative to TN inputs in all years.    

The proportion and mass of nutrients retained varied seasonally (Figure 6).  Seasonal 

variation of proportional and absolute retention for inorganic nutrients was similar, with the 

highest retention rates (1,660 kg NH3/d, 3,800 kg NOx/d, and 430 kg PO4/d) during the summer 

months (May-Oct) when CHLa and water residence time were greatest.  Proportional retention 

for inorganic nutrients approached 100% during this period.  During winter months, retention of 

NH3 and NOx were 2- and 8-fold smaller (790 and 450 kg/d, respectively), with negative 

retention of NOx occurring in late winter.  Similarly, absolute retention of PO4 was 2-fold lower 

(260 kg/d) during winter, although unlike inorganic N fractions, proportional retention typically 

exceeded 50% during most months.  Seasonal patterns of proportional and absolute retention for 

TN and TP differed.  Although proportional retention of TN peaked during summer months, 

there was little seasonal variation in absolute TN retention as average winter retention (6,970 

kg/d) was only slightly greater than average summer retention (5,670 kg/d).  For TP, absolute 

retention was 6-fold greater during winter months (3,000 kg/d) than in summer months (480 

kg/d) and proportional retention was relatively constant year round.   

Sensitivity Analysis & Uncertainty 

Retention estimates were derived by difference and therefore are subject to uncertainty 

that is influenced by underlying errors in each of the budget terms.  Of these, tidal exchange 
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estimates were of particular concern since these were not measured directly.  To assess the 

influence of underestimating tidal exchange, the effective net tidal exchange (2.5% of tidal 

prism) was doubled to 5%, 10%, and 20%.  The simulated changes in tidal exchange were found 

to have little influence on annual retention estimates.  At tidal exchange values 8 times greater 

than was used for nutrient budgets, the mean annual retention of NH3 decreased by 4%, TN and 

NOx by <3%, and TP and PO4 by <1%.  Budget uncertainty was also assessed by evaluating the 

relative magnitude of flux errors, and by incorporating flux errors into retention estimates.  With 

the exception of tidal exchange, flux errors for each of the budget terms were less than 25% of 

flux means (Table 3).  Because tidal exchange represents a minor component of the nutrient 

budgets (Figure 4), the proportionally larger errors associated with tidal exchange means were 

not a significant source of uncertainty.  When each of the flux terms was adjusted by its 

corresponding error to assess the cumulative influence on retention estimates (Figure 7), the 

simulated ranges of retention values showed that the variation about actual retention estimates 

was not that big, although ranges for N fractions were greater than those for P fractions.  

Accordingly, there was greater uncertainty in N retention estimates relative to P.  However, all 

results were much greater than zero suggesting that retention estimates were robust given the 

small water residence time of the study reach and uncertainties in estimating tidal exchange and 

other flux terms in the budget. 

 

 

 

 

 



www.manaraa.com

   

 18

DISCUSSION 

Compared to other estuaries, areal loading rates of N and P to the tidal freshwater James 

River are exceptionally high (Table 5).  It is important to note that all but two of the systems in 

Table 5 are entire estuaries.  Both the upper Patuxent Estuary (Boynton et al., 2008) and the tidal 

freshwater James River are freshwater portions of entire estuaries.  While the smaller estuarine 

surface area inflates the areal inputs of N and P for both of these systems, it emphasizes the 

magnitude of nutrient loads that are intercepted by these tidal freshwater reaches.  These 

segments of estuaries receive the entirety of riverine nutrient loads in addition to local point 

sources.  Using the proportion of the James River watershed down river of the study reach 

(13%), and NPDES point source allocation totals, we estimated that about 70% of the total N and 

P inputs for the entire James River watershed enter our study reach.  Accordingly, tidal 

freshwater reaches play an important role in retaining nutrient inputs relative to other areas in the 

watershed (Lampman et al., 1999). 

  The magnitude and composition of nutrient inputs affects the efficiency of retention, and 

for the study reach this was largely affected by seasonal changes in river discharge.  During the 

winter months, low rates of evapotranspiration drove high river discharge for the James and 

Appomattox Rivers (Smock et al., 2005; Appendix Figure 4).  These periods of high discharge 

delivered large riverine nutrient loads in addition to the steady point source loads.  The riverine 

inputs for the James were comprised of predominantly particulate and/or organic nutrients 

(annually, DIN = NH3 + NOx = 36% of TN & PO4 = 8% of TP), which is similar to other 

tributaries of the Chesapeake Bay (Boynton et al., 1995).  Thus during these high discharge 

winter months, the dominance of riverine inputs diluted the inorganic rich point source inputs, 

resulting in inorganic loads that were only 51% of the TN and 12% of the TP loads.  Jarvie et al. 
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(2006) observed a similar dilution effect in 54 different rivers in the UK.  Although large loads 

were delivered to the study reach during these high discharge winter months, residence times, 

algal biomass, and water temperature were low, which likely resulted in the low proportional 

retention of TN and inorganic nutrients.  Conversely, during summer months, elevated rates of 

evapotranspiration resulted in low river discharge, and thus relatively smaller riverine inputs.  

Because the magnitude of riverine inputs decreased during low discharge summer months, total 

nutrient loads to the study reach decreased and point sources tended to dominate.  During these 

periods, loads were reduced by 50% for TN and by 75% for TP relative to winter months, while 

the proportion of loads accounted for by inorganic nutrients increased to 63% of TN and 45% of 

TP loads.  Furthermore, the reduction in river discharge resulted in greater water residence times, 

greater algal biomass, and greater proportional retention of TN and inorganic nutrients.   

Given the apparent relationship between retention and residence time, we compared our 

results and residence time estimates with those of Nixon et al. (1996; Figure 8).  Although our 

TP export did not fit well to the regression line derived by Nixon et al. (1996), our TN estimates 

did.  Annual proportional TN export estimates for 2007-2010 in the tidal freshwater James River 

were high (65-85%) and related to low estimated average annual residence times (0.12-0.20 

months).  These high TN export values are likely due to short residence times in conjunction 

with large areal loading rates of tidal freshwaters.  Furthermore, because 55% of the annual TN 

inputs are dissolved inorganic nutrients, the relatively short residence time does not allow much 

time for biogeochemical processes to alter and ultimately retain the N inputs.  However, during 

the low discharge summer months when water residence time, algal biomass, and temperature 

are at a maximum, the majority of DIN retention occurs.  Due to the high retention of DIN 

during these summer months, the majority of proportional TN retention also occurs.  Although 
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DIN retention approaches 100% of inputs during the summer months, TN retention only 

approaches 60% of inputs, suggesting that the ecosystem functions as a transformer of nutrients 

converting DIN into organic nitrogen.  While the processes that work to retain N were not 

directly measured, it can be assumed that during these summer months some of this retention 

was due to denitrification and some was due to burial of algal assimilated N in the sediments.  

For the Delaware and Potomac River Estuaries, denitrification within the tidal freshwater reaches 

accounted for 20% and 35% of inputs (Seitzinger, 1988).  However these two studies were only 

conducted during the summer and fall, which for our study reach represented the periods of 

greatest DIN retention.  Therefore, it is conceivable that a large proportion of the DIN retention 

is due to algal assimilation at the CHLa maximum at JMS75.  The lower proportional retention 

of TN relative to DIN may be due to the advection of algal assimilated N from the study reach.  

Over 75% of CHLa and particulate organic nitrogen within the tidal freshwater James River have 

been shown to remain suspended in the water column after one day (Schlegel, 2011).  This may 

explain the lower proportional retention of TN relative to DIN, however as residence times 

increase in the low discharge summer months (up to 30 days at times), this fraction of suspended 

algal nitrogen will ultimately fall out of the water column and become buried in the sediments.  

When regressions relating river discharge, CHLa concentration, and estuarine water temperature 

to monthly retention estimates were run, it was found that all three environmental variables were 

significant and strong predictors of retention, although all three variables were also significantly 

strongly related to each other (Appendix Figure 5).  Because discharge (inversely related to 

residence time) was negatively related to retention while CHLa concentration and water 

temperature were positively related to retention, it appears that as Arndt et al. (2009) suggested, 
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it is the complex interplay of residence time and factors affecting biogeochemical reaction rates 

that influences TN retention on monthly time scales in our study reach.   

The tidal freshwater James River has exceptionally high TP retention estimates for such 

low residence times relative to the other estuaries plotted in Figure 8.  This high proportional 

retention is likely due to the sedimentation of riverine derived particulate phosphorus (PP), given 

that the majority of annual TP inputs were riverine (84%) and that these were predominantly 

particulate in nature.  Of the systems plotted in Figure 8, all but our study reach are entire 

estuaries, and 4 out of the 6 other estuaries received the majority of their P loads from rivers.  

Given this tendency for the majority of P inputs to be from riverine sources, it is possible that if 

the residence times were calculated for the entire James River Estuary, our data points may fit 

the line in Figure 8 because the increases in inputs from downstream sources would be small 

compared to increases in residence time.  Given that an estimated 70% of the total James River P 

load enters our study reach and that residence time at the mouth of the estuary is about 95 days 

(Shen & Lin, 2006), the suggestion that increases in residence time are much greater than 

increases in inputs is likely to be true.  Moreover, this result suggests that residence time is not 

necessarily a good predictor of TP retention.  In fact, unlike TN, when regressions relating 

discharge, CHLa concentration, and estuarine water temperature to our TP retention estimates 

were compiled, the only significant and strong predictor of TP retention was discharge.  

Furthermore, unlike TN, the relationship between discharge and TP retention was positive (i.e., 

residence time was negative).  This explains the strong positive relationship between inputs and 

TP retention since TP inputs were dominated by riverine inputs that increased with discharge.  

However, although absolute retention increased with inputs, proportional retention remained 

relatively constant year round, suggesting that during the low discharge summer months, 
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retention of TP is governed by a mechanism different than the sedimentation of riverine derived 

PP.  Thus, there are two mechanisms for TP retention that vary with discharge and season. 

The most important mechanism of retention for the tidal freshwater James River is the 

abiotic process of PP sedimentation during high discharge periods.  Because of the strong 

positive relationship between discharge and TP concentration, as river discharge increases there 

is a disproportionate increase in TP inputs as well.  However, although discharge increases, 

concentrations of TP at JMS75 tend to remain relatively constant, resulting in riverine outputs 

that increase only due to discharge.  Accordingly, riverine inputs are much greater than riverine 

outputs during these periods and retention is high.  During three high discharge events (640 – 

1359 m3/s), longitudinal concentrations of TSS and TP decreased in the downstream direction by 

up to 13- and 6-fold, respectively (Appendix Figure 6).  Because the cross sectional area of the 

estuary increases in the downstream direction, velocity therefore decreases, allowing the PP to 

settle out of the water column and bury in the sediments, which is a phenomenon observed in 

many tidal freshwater reaches (Schuchardt et al., 1993; Boynton et al., 1995).  This abiotic 

mechanism of retention is perhaps the most important for P retention because during these high 

discharge winter months 86% of the annual absolute retention occurs. 

The low discharge mechanism of TP retention is likely controlled by autochthonous PP 

sedimentation when longer residence times and more inorganic rich inputs allow for greater algal 

assimilation and sediment adsorption with subsequent burial in the sediments.  During summer 

months when river discharge decreases, TP inputs are 4-fold smaller and thus absolute retention 

was lower than the high discharge periods, although proportional retention remained relatively 

constant.  Because the relative contribution of point sources increases during these low discharge 

periods, the proportion of inputs that are PO4 increased from 12% during high discharge periods 
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to 45%.  Here, residence time and algal production became major drivers of retention, similar to 

the summertime retention of TN.  However, in the case of TP, it is also possible that a proportion 

of inorganic P inputs adsorbed to the tidally suspended sediments and ultimately became buried 

in the sediments.  Because neither process was measured directly, the presence of the CHLa 

maximum at JMS75 suggests that algal uptake may be more important, although more research 

is necessary in order to know the relative importance of both processes.  Regardless, it is 

therefore possible that the high proportion of annual TP retention relative to TN is predominantly 

due to burial of TP in the sediments, which is driven by a high discharge and a low discharge 

mechanism. 

Given that the end fate of TP is in the sediments, it is likely that the maintenance of the 

navigational channel through dredging and subsequent removal of sediments to an upland 

storage basin (USACE, pers. comm.) is a possible permanent removal of TP from the study 

reach.  Using an average ratio of water column TP:TSS (0.006 mg/mg; CV=76%) and assuming 

conservation of this ratio from the water column to the sediments, an average of about 20% of 

TP inputs would be removed through dredging based on an average of 74,000 m3 of sediments 

removed each year (1,550,106 m3 removed between 1990 and 2011; USACE, pers.comm.; 

Schlegel, 2011).  However, because this conservative assumption is potentially unrealistic, we 

used a sediment TP:TSS ratio (0.001 mg/mg) that was measured at JMS75 in 1994 (Meyers, 

1994).  Using this ratio, less than 10% of TP inputs were removed through dredging suggesting 

that the majority of TP inputs are retained in the sediments.  This 6-fold discrepancy between 

water column TP:TSS and sediment TP:TSS suggests that TP retained in the sediments does not 

necessarily remain within the sediments.  Because sediment PO4 release rates for the upper 

Potomac, Patuxent, and Choptank Rivers represented substantial losses of P from sediments to 
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the water column (740-5816 mg P/m2/d; Boynton et al., 1995), it is therefore possible that long 

term storage of P in the sediments may not be as high as our estimates suggest.  However, 

because there were no direct measurements of sediment-water exchange of P, more research 

focused on these sediment-water nutrient exchanges must be conducted to understand the long 

term fate of N & P retained in the sediments of the tidal freshwater James River. 

Conclusions 

Our study reach received large areal loading rates of nutrients relative to other estuaries.  

While this is an artifact of the smaller estuarine surface area of tidal freshwater reaches relative 

to entire estuaries, it emphasizes the role that these segments of estuaries play in intercepting 

nutrient loads from the watershed.  Seasonal variation in river discharge drives differences in the 

magnitude and composition of nutrient loads with high discharge winter months having large 

loads that are predominantly composed of particulate and/or organic nutrients and low discharge 

summer months having relatively smaller and more inorganic loads.  These seasonal variations in 

river discharge also directly affect residence time and thus the retention of nutrients.  Annually, 

TN retention was a function of residence time, although at monthly intervals, the retention of TN 

may be driven by the complex interaction of residence time, water temperature, and algal 

biomass.  Alternatively, annual retention of TP was not a function of residence time, but instead 

it was driven by two different mechanisms.  Both mechanisms involved the ultimate burial of TP 

in the sediments with the high discharge retention mechanism being the sedimentation of riverine 

derived PP, and the low discharge mechanism being the sedimentation of autochthonous PP that 

increases in efficiency with long residence times.  Finally, because the end fate of P is in the 

sediments, more research must be done on sediment P fluxes in order to determine if the 

sediments function as a permanent sink for a large proportion of retained P. 
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Table 1. Physical dimensions and distribution of sampling locations within the five zones 

comprising the study reach. 

    Area Mean Depth Volume Area Volume   
  Stations m2 m m3 % % Data Source 
Zone 1 JMS110, 107, & 104 2,066,000 3.000 6,197,000 5% 8% USACoE Navigational Charts 
Zone 2 JMS99 & 94 6,348,000 2.480 15,744,000 15% 19% NOAA Estuarine Bathymetric Data Set 
Zone 3 JMS87, 79 11,884,000 3.029 35,998,000 28 % 45% NOAA Estuarine Bathymetric Data Set 
Zone 4 JMS75 14,046,000 1.616 22,703,000 33% 28% NOAA Estuarine Bathymetric Data Set 
Zone 5 APP1.5 8,012,000 0.019 151,000 19% <1% CBP 2004 Segmentation Scheme Report 
Total   42,356,000 1.907 80,793,000       
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Table 2. Data sources used to construct a nutrient mass balance for the tidal freshwater James River.   

  Estuary Water Chemistry Riverine Inputs (USGS) Point Sources (NPDES) Tides 
(NOAA)  VCU VaDEQ   

Municipal 
WWTPs & 
Industry 

  

  2007 2009 
2010-
2011 

CBMP & 
AWQM Discharge Chemistry Richmond CSO 

Hopewell & 
Sewells Tidal 

Amplitude 
Sample 

Frequency 
Bi-monthly Bi-weekly Weekly Monthly Daily Monthly & Storm 

Events 
Monthly Monthly Event 

Based 
3-4 Times 

Daily 
Sampling 

Dates 
12 29 20 48 4383 161 442 48 4 6336 

Time 
Period 

Apr-Nov 
2007 

Aug-Oct 
2009 

Jul 2010 - 
Jun 2011 

Dec 2006 - 
Nov 2010 

Jan 2007 - 
Dec 2010 

Jan 2007 - Dec 
2010 

Jan 2007 - 
Jun 2011 

Jan 2007 - 
Jun 2011 

Sep - Nov 
2009 

Jan 2007 -  
Jun 2011 

Sampling 
Locations, 

Gauging 
Sites, 

Permits 

JMS99  
JMS94  
JMS87  
JMS79  
JMS75  
JMS69 

JMS110 
JMS107 
JMS104 
JMS99 
JMS94 
JMS87 
JMS75 

JMS110 
JMS107 
JMS104 
JMS99 
JMS94 
JMS87 
JMS75 
JMS69 

JMS110 
JMS104 
JMS99 
JMS87 
JMS75 
JMS69  
APP1.5 

USGS 
02035000 
02037500  
02041650 

USGS 02035000 
02041650 

VA0063177 
VA0024996 
VA0060194 
VA0066630 
VA0063690 
VA0025437 
VA0002780 
VA0026557 
VA0004669 
VA0005291 

VA0063177 VA0063177 NOAA Tidal 
Gauge   

8638610 
8638481  

Parameters 
Measured 

TN, NH3, 
NOx, TP, 

PO4, & 
CHLa 

TN, NH3, 
NOx, TP, 

PO4, CHLa, 
TSS, & Cl 

TN, NH3, 
NOx, TP, 

PO4, 
CHLa, 

TSS, & Cl 

TN, NH3, 
NOx, TP, 

PO4, 
CHLa, & 

TSS 

Discharge TN, NH3, NOx, 
TP, & PO4 

TN, NH3, 
NOx, TP, 

PO4, & 
Flow 

Discharge TN, NH3, 
NOx, TP, & 

PO4 

Surface Water 
Elevation 
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Table 3. Average daily fluxes (±SE) to and from the tidal freshwater James River during 2007-

2010.  Output fluxes are shown as negative values to indicate their value in equation 1.  

Quadrature adition was used to derive standard error of retention estimates based on standard 

errors of component fluxes.  

Budget Term TN NH3 NOx TP PO4 
    (kg/d) 
Riverine Inputs 13,090 ± 1,488 319 ± 41 4,343 ± 524 2,498 ± 287 203 ± 35 
Point Source Inputs 9,137 ± 210 2,599 ± 139 4,973 ± 115 470 ± 15 357 ± 15 
Riverine Outputs -16,227 ± 2,229 -1,661 ± 405 -7,130 ± 811 -1,214 ± 195 -230 ± 33 
Tidal Exchange -67 ± 19 -18 ± 5 -38 ± 8 -1 ± 1 0 ± 0 
Retention 5,932 ± 2,689 1,239 ± 430  2,148 ± 973 1,753 ± 348 331 ± 50 
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Table 4. Mean nutrient concentrations (mg/L) of riverine (James, Appomattox) and point source 

inputs to the tidal freshwater James River during 2007-2010 (±SE).  Point source concentrations 

are a volume-weighted average for the ten major outfalls that discharge to the study reach. 

  James River Appomattox River Point Sources 
TN 0.524±0.004 0.649±0.005 8.02±0.21 
NH3 0.010±0.001 0.023±0.001 2.28±0.23 
NOx  0.173±0.003 0.230±0.004 4.36±0.10 
TP 0.061±0.002 0.053±0.001 0.412±0.036 
PO4 0.012±0.001 0.013±0.001 0.313±0.031 
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Table 5. Areal loading rates for different coastal systems and the tidal freshwater James River 

during 2007-2010.  Areal rates are derived by dividing the flux by the estuarine surface area.   

System Estuarine Surface Area TN TP 
  m2 mg/m2/d 

Pawcatuck: Little Narragansett Baya 9,600,000 128 12 
Chincoteague Baya 328,500,000b 8 1 
Greenwhich Bay, RIa 12,000,000c 24 6 
Thamesd 248,000,000 411  
Medwayd 57,000,000 1  
Moreton Baye 1,775,000,000 <1  
Swan River (dry)f 31,000,000 45 3 
Swan River (wet)f 31,000,000 116 8 
Baltic Seag 374,600,000,000 8 <1 
Chesapeake Bayg 11,542,000,000 36 3 
Delaware Bay - Delaware-New Jerseyg 1,989,000,000 73 13 
Narragansett Bay, Rhode Islandg 328,000,000 71 10 
Guadalupe Estuary, Texas 1984g 551,000,000 21 6 
Guadalupe Estuary, Texas 1987g 551,000,000 79 15 
Potomac Estuaryg 1,210,000,000 80 4 
Ochlockonee Bay, Floridag 24,000,000 230  
Boston Harbor, Massachusettsg 108,000,000 349 56 
Scheldt Estuaryg 277,000,000 514 88 
Upper Patuxent Estuary (Pre-BNR; 1986-1990)h 26,000,000 205 13 
Upper Patuxent Estuary (Post-BNR; 1993-1999h 26,000,000 209 18 
Tidal Freshwater James River (2007) 42,400,000 371 68 
Tidal Freshwater James River (2008) 42,400,000 330 36 
Tidal Freshwater James River (2009) 42,400,000 435 83 
Tidal Freshwater James River (2010) 42,400,000 396 93 
Tidal Freshwater James River (Mean 2007-2010) 42,400,000 383 70 

aFulweiler & Nixon, 2005 
bPritchard, 1960 
cGranger et al., 2000 
dDevlin et al., 2011 
eFerguson & Eyre, 2010 
fRobson et al., 2008 
gNixon et al., 1996 
hBoynton et al., 2008 
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Figure 1. Distribution of estuarine sampling stations and the 5 study reach zones within the tidal 

freshwater James River.   
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Figure 2. Riverine and Point Source inputs of water and nutrients to the study reach. 
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Figure 3.  Longitudinal variation in CHLa, nutrient concentrations, and point source inputs to 

the tidal freshwater James River for 2007-2010 (±SE).  Data are four year means.  Bars denote 

proportional contributions by individual point sources, with the exception of the Hopewell 

WWTP and Honeywell Inc., which are both located at river mile 76.5. 

 
 



www.manaraa.com

   

 36

-480

-240

0

240

480

J F M A M J J A S O N D

(m
3 /s

)

Water

-40,000

-20,000

0

20,000

40,000

60,000

J F M A M J J A S O N D

(k
g/

d)
TN ΔStorage OUTte

OUTriv INpoint 
INriv 

-5,000

-2,500

0

2,500

5,000

J F M A M J J A S O N D

(k
g/

d)

NH3

-3,000

0

3,000

6,000

9,000

J F M A M J J A S O N D
(k

g/
d)

TP

-600

-300

0

300

600

900

J F M A M J J A S O N D

(k
g/

d)

PO4

-20,000

-10,000

0

10,000

20,000

J F M A M J J A S O N D

(k
g/

d)

NOx

 
Figure 4. Water and nutrient budgets depicted as daily average values by month for 2007-2010.    

Storage and tidal exchange values are too small to be apparent in some cases. 
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Figure 5. Interannual variation in annual nutrient inputs, outputs, and retention in the tidal 

freshwater James River during 2007-2010. 
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Figure 6.  Seasonal variation in proportional retention (% of inputs), absolute retention (kg/d), 

chlorophyll-a, and residence time in the tidal freshwater James River.  Mean and SE are based on 

monthly values for 2007-2010.  Residence time is based on the freshwater replacement time. 
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Figure 7. Ranges (closed circles) of annual mean retention as a percent of inputs for all five 

nutrient fractions.  Ranges are based on adjustment of derived fluxes by their budget term errors 

(Eyre et al., 2011), and are plotted about the actual (open squares) estimated retention. 
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Figure 8. Comparison of residence time and percent of TN and TP inputs that were exported 

from different estuaries (Nixon et al. 1996).  Closed circles, regression lines, and regression 

equations are from Nixon et al. 1996, with open circles representing the tidal freshwater James 

River during 2007-2010.  Estuaries from Nixon et al. 1996 include the Baltic Sea , Chesapeake 

Bay (TN only), Delaware Bay, Narragansett Bay, Guadalupe Estuary in a dry (1984) and wet 

(1987) year, Potomac Estuary (TN only), Ochlockonee Bay (TN only), Boston Harbor, and 

Scheldt Estuary. 
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APPENDIX 

Table 1. Mean nutrient concentrations for four CSO events monitored in 2009 by the Richmond 

Department of Public Utilities and the mean (±SE) of all four events.  TN was calculated by the 

sum of total Kjeldahl nitrogen and NOx. 

Date 
TN NH3 NOx TP PO4 

(mg/L) 

9/9/2009 6.6 3.4 0.7 0.5 0.4 
9/28/2009 4.4 0.9 N/A 0.4 0.3 

10/25/2009 7.2 2.9 0.6 1.6 0.3 
11/11/2009 13.4 7.4 0.6 1.3 0.5 

Mean 7.9±1.9 3.7±1.4 0.6±0.03 1.0±0.3 0.4±0.05 
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Figure 1. Flow chart indicating the use of different data sources (light grey) to derive the budget 

terms (dark grey).  
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Figure 2. Observed and predicted volume weighted chloride concentrations for the study reach 

from July 2010 to June 2011.  
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Figure 3.  CSO event monthly TN and TP fluxes from the Richmond Combined Sewer System 

for 2007-2010. 
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Figure 4. Four year (2007-2010) time series of average daily discharge for both the James and 

Appomattox Rivers.  Discharge values are plotted as stacked bars in order to show the total daily 

average.   
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Figure 5. Relationships between discharge, chlorophyll-a, and estuarine water temperature for 

the tidal freshwater James River during 2007-2010.  All relationships are significant. 
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Figure 6. Longitudinal profiles of TSS, TP, and average water velocity in the tidal freshwater 

James River during three high discharge events.  The 1359 m3/s, 1257 m3/s, and 640 m3/s 

events occurred on 4-19-2011, 3-8-2011, and 12-1-2011, respectively.  Average velocity was 

derived from average discharge divided by river cross-sectional area. 
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